
FiLE COPY

The COOL Library: User's
Manual, Version 1.0

C002DTIC
ELECTE

0JUS 111990
James Coggins

D1STRIMTT!ON STATEMENT A

.Approved fc; putbic releaaef

SoftLab Software Systems Laboratory
The University of North Carolina
Department of Computer Science
CB#3175, Sitterson Hall
Chapel Hill, NC 27599-3175

Supported in part by the NASA Center of Excellence in Space Data and Information

Sciences, contract#500-62 and the Office of Naal Research,

contract#N-00014.86- K-0680.

90go~ 174

Reference and title

C002

The COOL Library: User's Manual. Version 1.0

Publication history

Version 1.0: October 1989

Copyright and trademarks

Copyright ©1989. University of North Carolina at Chapel Hill. All

rights reserved. Copying without fee is permitted provided that the

copies are not made or distributed for direct commercial advantage.

and credit to the source is given. To copy otherwise, or republish.

requires a fee and/or specific permission.

Authors

James Coggins

The COOL Library
User's Manual

Table of Contents

Introduction...1
Analoglib.. 3

Class analog-.device......................................* .. ,**- -- *-4
Device-specific classes:public analog-device 5

Displaylib *"**'"*"***"******''**"'*"7
Classes ikonas, imagetool, and Ximagetool............................. 8

Disklib ... 12
Class diskfile... 13
Classes imageflle:public diskfile and oldheader 15
Class nseqflle:public diskflle .. 17
Class textflle:public diskfile... 1
Class polyfile:public textfile... 19

Enzymelib... 23
Class ift-server .. 21

Graphlib... 23
Class polyobject,.. 24
Class glob ... 2
Class gobject:public glob... 31
Class group:public glob ... 3

Imagelib/Bufferlib .. 34
Class image.. 35
Class buffer .. 39
Classes byte~jbuffer, int~buffer, realbuffer, and complex-buffer :
public buffer ... 42

Misclib .. 45
Classes complex and magpha...46
Class histogram..49
Class nd-gaussian... 52
Class subscript ... 54
Class timer... 58
Class random variate
Classes uniform-yariate and gaussian_variate...................... 61

Nseqlib ... 6
Class n..sequence ... 63
Class pattern:public nsequence .. 65
Class gpoint:public pattern... 67
Class gvector:public pattern.. 6
Class matrix:public n~sequence .. 71
Class sq-matrix:public matrix.. 73
Classes matrix2X2, matrix3X3, and matrix4X4...................... 75
Class Xform-matrix:public matrix4X4 77
Class Polyline:public matrix ... 79

STE2M "A" per Dr. A. Van Tilborg
ONR/Code 1133
TELECON 6/11/90 VG

Acknowledgements

The COOL library and the documentation for it has been one of my principal
research activities for the three years since I arrived at the University of North
Carolina. When I moved to Chapel Hill, I lost overnight the entire research
software library I had been developing and using due to incompatibilities between
the language and computing environments I had worked in for eight years and
the UNIX environment at UNC. Many graduate students and faculty colleagues
helped me to learn C++ and to begin building the library and its documentation. I
am pleased to acknowledge their contributions here:

Tim Rentsch introduced me to the "lunatic fringe" of Object-Oriented Design and
helped with some of the initial, critical decisions underlying some of the best
innovations in the library. Jonathan Walker pointed the way toward complex but
innovative and effective directory and makefile organizations and extolled some of
the virtues of C++ to me when I was but a novice. Brice Tebbs explored and
taught me basics of C++. Murugappan Palaniappan implemented and
reimplemented many of the early classes as my design concepts refined through
experience. His work appears in many places in the library, often in places other
than where he wrote them. John Rohlf wrote the first version of the graphics
classes. Andrew Glassner helped me to debug some of the graphics procedures
by teaching part of our intro graphics course using a rapidly evolving COOL. The
patience of the students in that class also deserves mention as COOL went
through a rapid evolution (revolution?) between their assignments using the
library. Greg Bollella's work through our department's Softlab to help me set up
the administrative structures of COOL resulted in publication of our approach
both on the Internet and in SIGPLAN Notices; this paper is substantially
reproduced in Chapter 4 of the Supplementary Documents. Greg's creative
expertise with Makefiles will be further illustrated in a later public release of
COOL in which the Makefile structure will support multiple architectures. Cathy
Vishnevsky and James Chung did their required Writing Projects on C++ and
COOL, respectively, and some portions of the chapter in teh Supplementary
Documents on C++ have been influenced by their reports.

My local users group, a captive audience whose sweat and time have been spent
exploring, using, and sometimes working around COOL have earned a mention
here, too: K. C. Low, Eric Fredericksen, Lisa Baxter, Yuchin Fu, Amandeep
Jawa have been and are yet exploring the use of the library in our research. Help,
comments and suggestions of various kinds have been received from Jonathan
Leech, Graham Gash, Tim Cullip, John Gauch, Briaa White, Russell Taylor,
Michael Kelley, Steve Pizer, and Fred Brooks.

When I interviewed for a faculty position at UNC, Fred Brooks asked me how my
computer vision research might shed any light on the problems of software
engineering. I didn't have a very good answer then. Fred, I would like hereby to
amend that response.

10/18/89

The COOL Library: User's Manual

Introduction
This report describes each of the sublibraries and classes of COOL, a library
written in the C++ Programming Language supporting image pattern
recognition and computer graphics research. This report documents the
structures of the sublibraries of COOL, including their component classes, design
decisions reflected in the current implementation, and prospective improvements
to the sublibraries.

The design principles and criteria used in COOL, an introduction to C++, and
practical library management techniques, as well as examples of programs using
COOL are found in the companion report, The COOL Library: Supplementary

Each c ass' objective will be sta ed briefly, thei'te constructors and member
functions will be described. A Commentary' section will discuss, for most
classes, possible or anticipated improvements, design decisions that seem
particularly good or poor, and usage notes. .

Clearly, this report will be revised frequently as experience with COOL
accumulates. Therefore, the printing date is used in the header of each page.
Also, the sublibrary name is written in the header line for easier indexing. The
sublibraries are alphabetically ordered. Classes within each sublibrary are listed
in order of a depth-first inheritance tree traversal, where appropriate, and
alphabetically otherwise.

The next page is a diagram showing the inheritance structure of COOL and its
organization into sublibraries. The portions of the diagram illustrating each
sublibrary will be used to introduce the sublibrary.

I

Introduction - 1

10/18/89

The Structure of COOL

analog dec/ gdV\
joysticpknobs tblet toothpick2

EI -5 oytc3knobs tliders toothpick

DISkli DisV~payiB
diskfile ikonas imagetool

4 Ximagetool
imagefile nseqfile textfile Ezymielib

I I If ft-server
oldheader polyfile

ImageliWbufferfib

Graphl image_,. bufe

polyobje' t glob

gobject group, byte-buffer real-buffer

lint-buffer complex-buffer

MiSdib
histogram random variate

complex ndgaussian
magpha subscript/\

timer gaussian variate uniform -variate

NseqMi
n sequence

pattern matrix

gpoint gvector matrix Polyline

matrix2X2 matrix3X3 matrix4X4

Xform Imatrix

Introduction -2

10/18/89
Analoglib

Analoglib
analog-device

jjoystick2 knobs sliders toothpicko

I joystick3 rpknobs tablet toothpick2l

Analoglib contains classes that encapsulate a variety of human/computerinteraction devices in the Graphics and Image Laboratory in the ComputerScience Department at UNC-Chapel Hill.

Note: The code of Analoglib is distributed with COOL because it illustrates aninteresting style of encapsulation, but since these classes are quite specific to theUNC environment, the Makefiles in the COOL distribution do not compile theseclasses or archive them in the cool. a library archive.

Analoglib - 3

_ "_10/18/89 Analoglib

Class analog_device

analog_device is an abstract superclass that provides services to the device-

specific subclasses.

Constructors

The protected constructor,
analog device(int type. int nb. char* devicedriver)

is invoked by the constructors of the subclasses to initialize the requested device
and to declare the communication protocol to be used with the device. The
parameter type indicates the storage class of the data values returned from the
device where 0 means char, 1 means short, and 2 means int. The parameter nb

indicates the number of bytes expected in a single read of the device, and the
devicedriver parameter is a null-terminated character string containing the
name of the device driver (as in "/dev/ad2dO" for the 2D joystick).

By protecting the constructor, we ensure '.hat the user cannot create an

analog-device object directly, which would be a serious error.

The destructor -analog device () simply closes the device driver.

Member functions

analog device& poll(f
reads the device and reports an error to ce rr if the number of bytes received
is different from the number of bytes expected as specified by the device-
specific constructor.

rawvalue (int i)
returns the ith value in the buffer, interpreting the array of bytes as char,
short, or int as was indicated by the device constructor. The
reinterpretation of the array of bytes as different types is performed using a
union adbuffertype defined in analog_device .h. An invocation of
rawvalue does not poll the device.

Analoglib - 4

10/18/89 Analoglib

Device-specific classes :public analog_device

joystick2 2-dimensional joystick
joy st i ck3 3-dimensional joystick
knobs a series of 4 knobs on the joystick box
rpknobs a group of 8 knobs on the toothpick box
sliders a set of 4 sliders on the joystick box
toothpick0 the toothpick on the gray box with the rpknobs
toothpick2 the black toothpick
tablet the data tablet and the buttons on its puck

The structure of the device-specific classes are sufficiently similar that they will
be discussed together. The header files of each device class contain symbol
definitions for use with the class. For example, knobs. h defines symbols KNOB0
through KNOB3. Some definitions, such as the colors for the sliders, RED, GREEN,
BLUE, and WHITE, are defined in file cool. h because they are shared by several
parts of COOL.

Constructors

Each class contains a null constructor and a destructor. The action of the
constructor is to pass the appropriate arguments to the analog_device
constructor. These are hard-coded, so no user action is required.

Member functions

Values may be obtained from the device in three ways. The function
value (int i' polls the device and returns the ith value received.
operator>> (int i) polls the device and returns the ith value received.

Some devices also have a series of messages that obtain a specific value by name
from the device. These are listed below for each device.

knobs knob0() knobl() knob2() knob3().
rpknobs rpknob0() rpknobl() rpknob2() rpknob3()

rpknob4 () rpknob5() rpknob6() rpknob7 ()
sliders redo green() blue() white()
tablet yellow() white() blue() green() z()

The values returned by all of the member functions are normalized. Knobs,
rpknobs, and sliders return scalars in the range 0.0 to 1.0. The 2D joystick can
return a single position coordinate or both in the form of a gpoint object in the
unit square with corners (0,0) and (1,1). The 3D joystick can return single
coordinates or a gvector object in (0,0) to (1,1). The types of values returned by the
joystick classes are based on characteristics of these joysticks. The 2D joystick is a
positional device, so its return value is a point; the 3D joystick is a spring-loaded
velocity device, so its value is returned as a vector. The tablet can return the
position as a gpoint and the button values as ints. I have never completely

Analoglib - 5

10/18189 Analoglib

understood how the toothpicks work anyway, so I just copied the conventions I
saw in some programs in the lab.

Commentary

The inheritance structure appears to be a good idea. The superclass provides just
the services needed by the device classes, and there is some meaningful code
sharing. The ability to specify parameters to the superclass constructor from the
derived class constructor in the constructor's procedure header made this class
hierarchy work.

This class hierarchy has not been used much in practice because the analog
devices are attached to only one particular computer system, and that system is
much less used because workstations and window widgets have become a more
common working environment. Nevertheless, applications arise occaisionally
where the best way to proceed is indeed to use a physical device - taping down a
paper onto the tablet for tracing, for example - and for these purposes, this
sublibrary is just what is needed to get the application written while hiding messy
details like bytes and device driver names.

It is not clear, because of the lack of experience with this library, that the decision
to provide both symbol definitions and named messages for each value in some
classes was a good one.

Analoglib - 6

10/18/89 Displaylib

Displaylib
ikonas imagetool Ximagetool

Displaylib contains three classes that operate graphical display systems in our
laboratory. The Adage/Ikonas 3600 display system is operated by class ikonas.
Windows on color SUN workstations running the SunView environment are
operated by class imagetool. Windows on Suns or DEC 3100 workstations
running th X Windows System are operated by ximagetool.

Note: The classes in displaylib are device-specific and require support libraries
to operate. These classes are distributed with COOL, but only the imagetool and
Ximagetool classes are compiled and included in the cool. a file.

Displaylib - 7

i -mmmmmmmu m m ,,m~
- 'l h - m~m

WA-

10/18/89 Displaylib

Classes ikonas, imagetool, and ximagetool

Since there are many similarities among these three classes, they will be
discussed together and significant additions or deviations will be noted as
required.

Constructors

The constructors of all three classes initialize their devices, including their color
lookup tables. The screen area initialized by all three classes is 512x512 pixels.
The imagetool and ximagetool classes have an additional constructor that
allows the user to specify the row and column coordinates of the upper left corner
of this 512x512 window.

The display window is considered to be composed of four 256x256 viewports
numbered rowwise as follows:

0 1
2 3.

Thus, even-numbered viewports are on the left and odd-numbered viewports are
on the right. These viewport numbers are used in the member functions described
below.

The color table is initialized by the constructor to a configuration, unique to our
lab as far as we know, that we have found particularly useful in our research.
Both devices provide an 8-bit lookup table that maps the integers 0 to 255 into 24-bit
colors (8 bits each to drive the red, green, and blue guns). We allocate these 256
driving levels as indicated below.

128-level grey scale 8 16-level color scales

~RI G IBI YI CI V IBri
0 127 255

A 128-level gray scale occupies driving levels 0 to 127. The rest of the range is
divided into eight 16-level color scales. Each color scale contains a particular hue
at full saturation that moves through 16 levels of brightness. The colors in our
implementation are red, green, blue, yellow, cyan, violet, and brown. The last
color scale is a rather attractive cornflower that is reserved for system use.

The destructors close the devices. On the Ikonas, the image remains on the
screen after closing; the imagetool and Ximagetool destructors remove the
display window entirely.

Member functions

The member functions for these classes fall into three groups: clear, image
display, and graphical display.

Displaylib - 8

10/18/89 Displaylib

clear(int viewport. in- color)
sets the specified viewport (default to viewport 0) to a particular color value,
defaulted to 0 (black).

clear all(int color)
sets all four viewports to the indicated color, defaulted to 0 (black).

display(int vport. image src)
displays the source image, which may have any storage type, in the
indicated viewport. No intensity scaling is performed by display, but a type
conversion to byte is performed. The byte image is mapped into the gray
scale part of the color table only.

display(int vport. imace src. image mask. byte enable)
displays image src in the indicated viewport and uses the mask image and
the enable byte to determine what color scale is used at each pixel. Both
images are converted to BYTE. Then the driving value is computed for each
pixel. After ANDing the mask pixel with the enable byte, the lowest-order 1
bit in the byte determines which color scale is used for that pixel. The lowest
order C'V) bit maps to red, the '2' bit to green, and so on. If after ANDing the
byte is zero, the grey scale is used. The particular value to use within the
chosen scale is determined from the high-order bits of the source pixel (7
bits if the gray scale is used, 4 bits if a color scale is used.

0 [7 high-order bits of source pixel

1 color scale 4 high-order bits
selector of source pixel

Computation of Driving Levels for Image Display
top: grey scale mode

bottom: color scale mode

void displayOfint vpor-:. image im)
is a direct, uninterpreted byte dump to the screen. Displayo is invoked by
the other display functions and could probably be declared as a private
function, but I felt it was too potentially useful to hide.

The last group of functions display graphical objects, currently as wire-frames.

display(int vport. polvobject* obj, int color)
displays a polyobject, which is a collection of Polylines.

display(int vport. Polyline* poly. int color)
displays a single Polyline structure, which is a sequence of connected line
segments. The color parameter defaults to white in both cases. The
Poly line class is capitalized because of a name conflict with the SunTools

Displaylib - 9

10/18/89 Displaylib

procedure polyline. These display procedures assume that all necessary
projections have been performed. The graphical objects should be scaled to
the unit square with corners (0,0) and (1,1) to match the size of the viewport.
If the graphical object exceeds this size, it will be drawn over the other
viewports. Thus, to produce graphical output that covers all four viewports,
one can scale the graph to the square with corners (0,0) and (2,2) and
display it in viewport 2.

The imagetool and ximagetool classes (and not the ikonas class) has one more
function for handling interactive input.

int get input(int& button. int& vport. subscript& point'
checks for mouse clicks in the imagetool window and returns 0 if there
have been none, 1 if the mouse has been clicked in the window. In addition,
it places in its arguments the number of the button that was pressed (0
means left, 1 means center, 2 means right), the viewport number, and the
(row,col) subscript indicating the location within the viewport where the
button was pressed. This function can be used to control a loop waiting for,
say, the right button to be pressed in window 2. While get_input is
running in such a loop, the window can be moved, redisplayed, or even
resized. In such a loop, other mouse clicks may be used to control the
program in other ways, including printing pixel values or storing locations
as vertices of a contour.

Commentary

When I first wrote displaylib, before the COOL library management strategy
was developed, I included an abstract superclass, display_device, that
encapsulated the many commonalities between the ikonas and imagetool
classes. I found that the entire support libraries for the Ikonas and for SunView
were being linked into my programs. This was clearly unacceptable, so I removed
display device and left the device classes separate. It may be time to try the
abstract superclass again.

When COOL was first written, SunWindows was the dominant window
management system at UNC. Since then, the X Window System has become the
dominant window system. The development of Ximagetool (through modification
of imagetoo!) required only a day and would have been much quicker except for
compatibility problems with function prototypes in the header files for X.

These classes have served my needs well. Others may require control of the size of
the imagetool window or control over special features of other display systems.
The lack, at present, of facilities in COOL for shaded surface graphics is a serious
limitation that would require changes here and in graphlib. I would particularly
like to incorporate the Pixar Image Computer as one of the supported display
devices, especially since we have developed network access methods to the Pixar
so it can be run from workstations other than its host computer.

Displaylib - 10

10/18/89 Displaylib

Displaylib illustrates my approach to the objective of separation of concerns.
Since display and interaction involve concepts and concerns not shared with data
structures for processing or for storage and communication, I seek to separate
activities in each of those three categories. The good side of this decision is that the
concerns are separated and what is learned about display for one class can be
shared in writing display code for other classes. For example, having written
display code for images made writing the display code for graphics easy. In
addition, the different display procedures are able to share services, especially the
initialization services provided by the constructors, and the input services in
imagetool. (For an even better example, see disklib.) Thus, an image or a
pol yob j e ct does not know how to display itself; instead, these computational
structures are dispatched to a display device that knows how to map the object
onto a display. It might appear that knowledge of the internal structure of
displayable classes must be contained in the display device class, but this is not
really so. The display class needs simply to know how to ask for what it needs
using data access member functions. With that design, changes in data formats,
styles or storage patterns does not affect the interface used by the display device.

Displaylib - 11

10/18/89 Disklib

Disklib
diskf ile

.- I
imagefile nseqfile textfile

I I
oldheader poly Ifile

Disklib encapsulates UNIX disk file handling procedures for various kinds of files
needed in COOL. Diskf ile provides basic 1/O services while the subclasses
encapsulate various file formatting conventions.

Disklib - 12

10/18/89 Disklib

Class diakfile

Disk file is an abstract superclass that provides for its subclasses the basic disk

services: open, close, read, write, and seek.

Constructors

Three constructors are provided: the null constructor, diskf ile (char*) to open
the named file for reading, and disk file (cha r*. int) to open the named file for
the type of access indicated by the integer permission code,

The null constructor does not open a file and leaves a flag to that effect. The file
may be opened later with the diskopen (char*, int) message. The
diskfile (char*) constructor opens the named file for READ access. The
diskfile (char*. int) constructor opens the file named in the character string
with the permission codes given in the integer argument.

Symbols READ, CREATE, and UPDATE are defined for the integer permission codes.

The destructor simply closes the file.

Member functions

void filename(char*)
copies the file name to the argument. It is assumed that an appropriate
buffer is allocated.

void diskopen(char*.int)
is used to open a file with the integer permissions specified when the
disk file was created with the null constructor.

int diskread(char* buf, int len)
attempts to read len bytes from the file into the buffer buf, returning the
actual number of bytes read.

int diskwrite(char* buf. int len)
attempts to write len bytes to the file from the buffer buf, returning the
actual number of bytes written.

int diskseek(long pos.int whence)
performs a seek to position pos relative to the beginning, end, or current
position in the file depending on the value of whence. Symbols FROMBEG,
FROMEND, and FROMHERE are defined for use in this argument.

Commentary

I originally wrote the image object with load () and store () member functions
that would read images from disk and store them there. These were the longest
member functions in the whole image class, so they already looked out of place
there. When I later found that I needed to load () and store () certain matrices,

Disklib - 13

10/18/89 Disklib

I realized that my experience in implementing reads and writes of images could
not be used to help me define analogous operations on matrices. This struck me
immediately as a serious design flaw. I decided to bring together all disk
handling routines under a single inheritance structure in which basic disk file
services are provided by a base class while file formatting information for
different kinds of files is hidden in the subclasses. This design decision has been a
big win for COOL. This experience led to the formulation of the separation of
concerns that serves as a principal design criterion for COOL: the separation
between processing, storage and communication, and display and interaction.
This idea is applied in several sublibraries of COOL.

An enhancement to this library that is in the works is the use of the XDR protocols
to read and write disk files. XDR translates byte sequences between different
architectures so that files can be read by processes on any supported architecture
independent of the architecture of the machine that created the file. This is an
important capability in our lab where multiple architectures are routinely used.

Disklib - 14

10/18/89 Disklib

Classes imagefile:public diakfile and old.header

Image file and oldheader jointly implement the storage of 2D and 3D images.

Constructors

prompts the user for a file name to be opened with READ access.
imarefile (rhar*)

opens the named file for read access.
ima efile (char*. int)

opens the named file for the access indicated.
imagefile(buffer type. subscript.int'

prompts the user for a file name to be opened (created) for writing with the
stated buffer_type, 2D size and number of planes.

imagefile(char*.buffer type. subscript~int)
opens (creates) the named file for writing with the stated buffertype, 2D
size and number of planes.

Symbols READ, CREATE, and UPDATE are defined for the integer permission codes.

buffer_type is a typedef equivalent to char*. A buffer_type is a one-character-
long string indicating a storage type. Symbols are defined as follows for the
implemented values of buffer-type: BYTE, INTEGER, REAL, COMPLEX, GREYTYPE
(same as INTEGER).

Member functions

buffer type type()
returns the type of the image(s) contained in the irage f i l e.

void size(subscript& s. int& p'
returns in its arguments the 2D shape of the image planes and the number
of planes in the imagefile.

image loadfint plane=0)
returns the indicated plane from the image file. The image returned has
the storage type indicated by type () and the size indicated by si ze 0.

save(image im. int plane)
saves the given image in the indicated plane of the image file.

Commentary

Class oldheader encapsulates the strange header format used in the UNC-
developed /usr/ image library. Its operation is invisible to the user, and in fact, no
support is provided in COOL for any of the header functions other than what is
described above. Oldheader is a separate class in order to keep header-format-
dependent junk out of the image file code, which is nicely compact and elegant.

Disklib - 15

10/18/89 Disklib

We expect to change the header format soon, so I have encapsulated it so I know
what has to be changed.

The linkage between an imagefile and its oldheader is of some technical
interst. The imagefile contains a pointer to its oldheader, and when the
oldheader is constructed, it is provided a pointer back to the imagefile. Now
since oldheader and imagefile are friend classes, each can invoke any methods
or access any data of the other. This intimate relationship keeps the operations of
the classes cleaner and is justified since their separation is purely formal; they
are really parts of the same conceptual object.

The functionality supported now is the minimum that is required. An image file
stores a series of 2D planes of pixels; all of the planes are of the same storage type
and same size. The imagefile may be interpreted as a series of 2D images or as a
single 3D image, as desired, but this interpretation must be handled in the client
software - dimensionality above 3 is not handled in the imagefile class at all for
now. It is possible to make imagefile handle higher-dimensional images and the
new header format might provide such functionality.

Imagef ile reads only whole planes, but there is some demand for a capability to
read portions of image planes. This feature may be added in the future.

The current imagefile class has proven very easy to use and extremely valuable.
Many nettlesome details are hidden away in this class, making it one of the most
satisfying encapsulations in the library.

Disklib - 16

10/18/89 Disklib

Class nseqfile:public diskfile

Nseqfi le allows the storage to disk of data contained in a class that is part of the

Linear Algebra Tree (sublibrary nseqlib).

Constructors

nseqfile(char*. int)
opens the named file for the access indicated by the integer permission
code.

Symbols READ, CREATE, and UPDATE are defined for the integer permission codes.

Member functions

load(n sequence&)
loads the file into the given nsequence. The argument could be an object of
any subclass of n_sequence.

save(n sea,,ence&)
saves the given n_sequence to disk. The argument could be an object of any
subclass of n_sequence.

Commentary

The use in the member functions of arguments rather than function returns is
dictated by the C++ type system. It is essential that any class in the Linear
Algebra Tree be valid for use with the nseqfile, and this was the way to achieve
that end.

Disklib - 17

10/18/89 Disklib

Class textfile:public diskfile

This class adds to disk file operations that are valid for text files.

Constructors

textfile(char*.int)
Opens the named file for the access indicated by the integer permission
code.

Symbols READ, CREATE, and UPDATE are defined for the integer permission codes.

Member functions

int read into
Reads an integer from the file

double read realo)
Reads a double from the file

void real eol()
Reads to the end of the current line immediately

void write(int)
Writes an integer to the current line

void write (double)
Writes a double to the current line

void newline()
Writes a newline to the file

Commentary

The t e xt f i 1 e class provides operations that interpret the bytes as strings
representing numbers. The newline () and read eol () functions are useful for
formatting. Spaces are written after the number in both write () functions.

Disklib - 18

10/18/89 Disklib

Class polyfile:public textfile

A polyfile is a textfile that understands how polyobjects are stored on disk and
thus knows how to load and store them.

Constructors

polyfile lchar*. int)
Opens the named file for the access indicated by the integer permission
code.

Symbols READ, CREATE, and UPDATE are defined for the integer permission codes.

Member functions

polvobject* loado)
Loads a polyobject from disk.

save (polyoblect*)
Saves a polyobject to disk.

Commentary

This simple class and its interactions with its subclasses is a marvelous example
of encapsulation and inheritance. All that the application needs is to load and
save polyobjects, and that is exactly what is provided, with a minimum of excess
administrative code.

A polyobject is stored as follows:
integer number of polylines in the polyobject

integer number of points in the first polyline
<the points as triples of reals>

integer number of points in the second polyline
<the points as triples of reals>

Anything after the last required number on a line is ignored, so comments can be
placed at the end of each line.

Disklib - 19

10/18/89 Enzymelib

Enzymelib
fftserver

An enzyme is an encapsulation of a well-defined procedure. This characterization
applies in biochemistry as well as it does to object-oriented design. Enzymelib
contains process encapsulations: classes whose purpose is not in the data it holds
but in the effects it has on objects of other classes. My enzymelib contains several
process encapsulations of interest to my research, but perhaps only temporary
interest even there. The class we are distributing with COOL is one of more
general interest and one that epitomizes the value of process encapsulation: the
f ft server class.

Enzymelib - 20

10/18/89 Enzymelib

Class f ft server

The f ft server class computes 2D discrete, fast discrete Fourier transforms and
inverse t-ansforms on objects of class image.

Constructors

The fit_server constructor takes two integer arguments indicating the row and
column dimensions of the image this server will transform. The dimensions
must be powers of 2 but not necessarily equal. Given this information, the
constructor precomputes several tables of indexes and complex coefficients that
will be used to speed the computation when the f ft server is called upon to
operate. The f ft server can operate only on images of the size specified in the
constructor. If you need FDFTs of different sizes in the same program, you must
create separate f fts e rve r objects for each size.

The destructor simply deletes the tables created by the constructor.

Member functions

Two data access functions are provided.
int dim ()

returns the dimensionality of this f ft_server, 1 or 2 (always 2 right now)
in size ()

returns the product of the number of rows and the number of columns.
These particularly unhelpful functions remain in the code out of interia.

image forward(image im)
image inverse(image im)

These functions do the work of the FDFT and inverse FDFT respectively.
The input image may be of any storage type; it will be converted to storage
type COMPLEX internally. The input image is not modified by the FFT
computation. Both functions yield an image that is in COMPLEX storage
format.

Private member functions

The f ftserver contains several private member functions, sere rer rro
reports errors to ost ream cout.
make server(int.int

is invoked by the constructors to create the tables of subscripts and complex
coefficients.

controls the computation of a forward FDFT by calling the other private
functions.

fft shuffle(image)
performs an in-place bit-reverse shuffle of the argument image.

fft atno(image)

Enzymelib - 21

10/18/89 Enzymelib

performs a fast discrete Fourier array transform using an algorithm
optimized for 2D images published by L. Johnson and A. Jain in IEEE
PAMI.

Commentary

The f ft server class works very well on 2D images of size up to 1/4 million
pixels (e.g. 512x512 images). At that size, the computation slows to unreasonable
times. The f ft server class could be extended trivially to handle 1-D transforms
of patterns. This need simply has not arisen yet in our work.

The notion of enzymes is very powerful and can apply not only to algorithms
requiring extensive precalculation like the FDFT, but also algorithms that are
under development, algorithms that are coherent, self-contained entities, or
procedures that are highly optimized and therefore require more extensive
maintenance.

We have prototyped a class that encapsulates the manipulations required to send
an image across the network to a supercomputer facility where highly optimized
FDFT procedures can be applied. To the programmer, this class provides the
entrance to a tunnel; an image can be shipped into the tunnel and it returns later
(but not much later!) out of the tunnel transformed as requested. This facility
requires software both on the sending workstation and on the supercomputer. We
will be incorporating this facility into a later release of COOL. Other candidate
procedures of general interest that might become enzymes are eigenvector and
eigenvalue computations and matrix inversion.

Enzymelib - 22

I

10/18/89 Graphlib

Graphllb
glob

polyobject / \
gobject group

Graphlib provides some classes that support representation and processing of

computer graphics models and display lists.

Graphlib - 23

10/1889 Graphlib

Class polyobject

A polyobject is a sequence of Polylines used for representing objects in a
computer graphics system. An object of class polyobject is a node in a linked list
of polyobjects, each of which contains a name of up to 10 characters, a pointer to
a Pol yl ine object that contains the sequence of vertices making up the object, and
a pointer to the next polyobject in the sequence.

Constructors

polyoblect(const char* name=NULL)
This constructor creates a polyobject with the indicated name and with null
pointers for both the Polyline and the next polyobject.

po1yobject (polyobject&)
The copy constructor duplicates the entire given polyobject by
copying the pointers and the name, only. The Polyline is not duplicated.

polyoblect(Polyline*. const char* name=NULL)
This constructor creates a polyobject with the given name pointing to the
given Polyline.

polyobject (Polyline*, polyobject* const char* name=NULL)
Create a polyobject with the specified name, Polyline pointer and next-
polyobject pointer. This constructor is used to place a polyobject
pointing to the specified Poly line at the head of a linked list of
polyobjects.

-olyoblect ()
The destructor deletes the Polyline and passes the delete along to the next
polyobject in the list.

Member functions

The first three member function handle the name field of the polyobject.

polyobject& set name(const char* name)
Set the polyobject's name to the given string.

char* get name()
Return a pointer to the polyobject's name string.

polyobiect& orint name()
Print the polyobject's name to cout.

The next member functions access the pointer members.

polvobject* next o)
Return a pointer to the next polyobject in the linked list. This message is
used to advance through the linked list ofpolyobjects.

Polyline* geto)
Return a pointer to this polyobject's Polyline structure.

Graphlib - 24

10/18/89 Graphlib

polyobiectg attach(polyoblect*)
Attach the given linked list ofpolyobjects to the end of the linked list
headed by self.

polyobiect& poerator=(polyobJect&'
Copy the pointers of the argument to self.

polyobject* process(Xform matrix)
Send the given Xform matrix to the current Polyline and to the rest of the
current linked list ofpolyobjects. This message is used to apply a
transformation to all of the Polyline data for an object. The return value is
a pointer to a new polyobject with new Polylines that have been so
transformed. The current polyobject and its Polylines are unchanged.

polyoblect& homogenize(

To homogenize the representation of an object, homogenize all of the
Polylines that make it up. Homogenizing involves dividing each point
through by its w coordinate.

Commentary

At present, the destructor's design is incompatible with the design of the copy
constructor and operator=O. Since the copy and operator= just copy pointers and
do not duplicate the entire linked list and the Polylines, and since Polylines do
not have reference counts like buffers do, it is not possible to pass a polyobject
as an argument (but it is permissible to pass a polyobject * as an argument!).
When the local polyobject is deleted, it will delete the Polyline that is still
needed in the calling scope. Caution is therefore warranted in using the
polyobject. Never use one as an argument.

Graphlib - 25

L

10/18/89 Graphlib

Class glob

Glob is an abstract superclass for graphical objects -- either gobjects or groups. A
glob contains a name of up to 10 characters, a pointer to the next glob in a linked
list of globs, a transformation matrix, and a visibility flag.
It might be desirable, in some unlikely situation, to create a glob directly, so the
glob is provided with a hard-coded, displayable representation. The glob also
contains a parent pointer that points to the glob that is the parent of this glob's
linked list. The parent pointer is important for propagating the effects of
transformation matrices through the glob structure.

Constructors

The constructors allow specification of any of the fields of a glob.

glob (char" name=NULL)
Create a glob with the specified name, an identity transformation, a null
pointer to the "next" glob, and invisible.

Copy all fields of the given glob.
glob(Xfor. matrix. char* name=NULL)

Create a glob with the specified name and transformation matrix, a null
pointer to the next glob and invisible.

glob(Xfori matrix, glob*. char* name=NULL)
Create a glob with the specified name, transformation matrix, and
next-glob pointer. This is used to attach the new glob as the new head of a
linked list of globs.

Member functions

glob& set name(char* name)
Copies the given string into the name field of the glob. The name is limited
to 10 characters.

char* get name()
Returns a pointer to the name string of the glob.

alob& print nameo)
Prints to cout the name of the glob. If the glob is invisible, a # will be
prepended to the name.

virtual void print structuref)
Prints to cout the name of self (using print.name) followed by a space,
and forwards the message to the next.glob in the linked list of globs.

glob& attach(glob*)
Attaches the given linked list of globs to the end of the linked list headed by
self.

glob* next()
Returns a pointer to the next glob in the linked list.

Graphlib - 26

10/18/89 Graphlib

glob* get parent()
Returns a pointer to the parent gLob.

glob& set Darent(glob*)
Sets fhe parent pointer in s e if equal to the argument.

glob& set Xform(Xform matrix T)

Sets the transformation matrix of self to T.
Xform matrix get Xform)

teturns the transformation matrix of self.
glob& print Xform)

Prints to cout the name of self, the name of the parent of self, and the
transformation matrix of se 1 f.

virtual void print Xform structurei(char* name=NULL)
If the name is null, this prints to cout the transformation matrices of all
globs in the linked list headed by self. If name is not null, only the named
glob(s) will print their transformation matrices. Note that even if se lf is
printed, the message is still passed on through the linked list.

The following group of messages handle modifications of the transformation
matrix and propagating orders for such modifications through the linked glob
structure. The Xformtype arguments are from the set (TRANSLATE, ROTATE,
SCALE), the axis arguments are from the set {x, Y, z} and the double arguments
are the parameters of the operation. In all cases, the new transformation matrix
is created by multiplying the old transformaiton matrix on the LEFT by a
transformation matrix containing the indicated operation

glob& transform(Xform type. axis. double)
Modify the transformation matrix by the indicated 1-axis transformation.

alob& transform(Xform type. double. double, double=0O.)
Modify the transformation matrix by the indicated 3-axis transformation.

virtual void transform(char*. Xform type, axis, double)
If the name of self is the same as the first argument, apply the indicated
transformation. In any case, pass the message on through the linked list of
globs.

virtual void transform(char*. Xform type. double,doubledouble)
If the name of self is the same as the first argument, apply the indicated
transformation. In any case, pass the message on through the linked list of
globs.

virtual polyobJect* process (Xforp matrix)
The argument is a viewing transformation matrix that is to be applied to
the whole linked list of globs. The result is a polyobject containing a
linked list of Polylines produced by transforming the Polylines in the
linked list headed by self.

virtual Xform matrix get absolute Xform()
This is a private function that computes the absolute transformation matrix
for se if by multiplying together all of the transformation matrices in the
parent globs all the way to the root of the glob list.

virtual Xform matrix get absolute(char*)
Compute and return the absolute transformation matrix for the named
glob. (If self is the named glob, invoke get absoluteXform(.

Graphlib - 27

10/18/89
Graphlib

Qlob& visible(
Set this glob to visible.

alob& invisibleo(
Set this glob to invisible. Invisible is the default for globs.

Commentary

The glob hierarchy is one of my best examples of effective inheritance andencapsulation. The diagram below illustrates the structures of these classes.

nam glob

T

gobject group

name
name glob- ~ ~ ~ a O lb-0 lb.

L-TT
T

polyobject glob

The diagram shows that gobject and group inherit all of the data components ofglob while adding a small extra item that distinguishes them. A gob ject adds apolyobject pointer while a group adds a glob pointer. The glob operations thatmanipulate the transformation matrix, the name, and the next glob pointer arealso inherited from glob. What the derived classes must supply is operations ontheir unique parts and, in a couple of cases, special versions of the operationsdefined in glob that are different due to the additional structure of the derived
class.

These classes can be used to create linked display lists of arbitrary complexity, as
illustrated below.

Graphlib - 28

10/18/89 Graphlib

house treetrk a

car car

In this example, the words "house", "car", "tree", and "truck" refer to
p ol1yob je ct s containing graphical representations of the named objects. Notice
that in the world model above, there are three instances of "car". Each instance is
controlled by a different set of transformation matrices, so the three instances
may behave independently. Similarly, the cars and the truck may be moved as a
group relative to the house and tree by changing the transformation matrix in
node 2. The police car can be moved by itself by sending a message to the worldaddressed to the police car, for example,

world->transform("police", TRANSLATE,X,20.0);
This message would modify the transformation matrix in node 7. When a view isto be created, the transformation matrix applied t uhe ca polyobject to produce
the image of the police car is found by multiplying the viewing transformation
matrix by matrices 2 and 7 and processing the car with the result.

It can be difficult to keep up with the viewpoint in an active model. Therefore, it is
possible to create a glob directly in the model whose purpose is basically to keep
up with a viewpoint as the model moves. For example, the viewpoint of the driver
of a car might be maintained as a glob having a certain fixed relationship to the

Graphlib -29

wol[tasomIplc"TASAEX2.)

10/18/89 Graphlib

car. By asking for the absolute transformation of the viewer g lob, one can obtain
the transformation matrix to apply to the rest of the world. Globs are normally
invisible, but they can be made visible. They will appear in the model as small eye
pyramids. Thus, it is possible to create a viewer glob and pan through the scene
inspecting the shot before looking at the world from the prearranged view.

Graphlib - 30

10/18/89 Graphlib

Class gobject:public glob

A gobject is a kind of glob that contains a pointer to a polyobject that contains

the graphical representation of an object in the virtual world.

Constructors

gobject (gobject&)
Copy one gob j ect to another by copying the pointers.

gob iect (2olvobJect*. char* name=NULL)
Create a gobject with the indicated polyobject and name.

gobject (polyobject*.Xform matrix.char* name=NULL)
Create a gobject with the indicated polyobject, transformation matrix,
and name.

gobject(polyobject*.Xform matrix.glob*.char* name=NULL)
Create a gobject with the indicated polyobject, transformation matrix,
name, and next_glob pointer. This constructor is used to add the new
polyobject onto the front of a linked list of globs.

Member functions

void print structure()
Print to cout the name of self, if any, the name of the polyobject in
square brackets, and pass the message to the next_glob.

polyobject* process(Xform matrix)
Multiply the given transformation matrix on the LEFT by the one in self
and then if self is visible, process the polyobject. Next, return a
polyobject* pointing to a list of polyobjects containing the results of
processing the rest of the linked list of globs by the given transformation
matrix.

Commentary

Graphlib - 31

10/18/89 Graphlib

Class group:public glob

A group is a kind of glob that contains a pointer to another list of globs.

Constructors

aroup (ctroup&)
Copy one group node to another by copying the pointers.

group (glob*. char* name=NULL)
Create a group with the indicated glob list pointer and name.

group(glob*. Xform matrix, char* name=NULL)
Create a group with the indicated glob list, transformation matrix, and
name.

group(Slob*. Xform matrix, glob*. char* name=NULL)
Create a group with the indicated glob list, transformation matrix,
nextglob pointer, and name. This constructor is used to attach the new
group as the head of a linked list of globs.

Member functions

void print structure()
Print to cout the name of self and the characters": ". Next, pass the
message down to the model list. Finally, print ") " and pass the message to
the nextglob. The result is the structure of the world in a linked list
notation.

void 2rint Xform structure(char* name=NULL)
If the name provided is null, print the entire transformation matrix

structure of the glob list with self as its head. If a name is provided, and it
is the name of self, print the transformation matrix of self and pass the
message on to the glob list and to the next_glob.

void transform(char*, Xform type. axis. double)
If the first argument is the name of self, apply the indicated
transformation to the transformation matrix in se 1 f. In any case, send the
message on to both the glob list and the nextglob.

void transform(char*. Xform type, double. double, double)
If the first argument is the name of s e 1 f, apply the indicated
transformation to the transformation matrix in self. In any case, send the
message on to both the glob list and the nextglob.

polyobject* process(Xform matrix)
Multiply the transformation matrix in se 1 f on the RIGHT by the given
transformation matrix and send the product in a process message to-the
glob list. Send the given transformation matrix in a process message to
next_glob. Return the concatenation of the results of the process
messages sent to the glob list and the next-glob.

Xform matrix gat ahsolute(char*)

Graphlib - 32

10/18/89 Graphlib

If self is the named glob, return the absolute transformation matrix of
self. Otherwise, pass the message to next glob. If the result is identity,
pass the message to the globlist and return the result.

Commentary

Graphlib - 33

10/18/89 Imagelib/B ufferlib

Imagelib/Bufferlib
image

buffer

byte buffer realbuffer

int buffer complex buffer

Each image object contains a pointer to a buffer object that is realized as one of the
subclasses of buffer (one for each supported type). Messages to image are
forwarded to the buffer object where most of the messages are interpreted by the
subclass code in a type-dependent manner.

Imagelib/Bufferlib - 34

10/18/89 Imagelib/B ufferlib

Class image

The image class is the heart of COOL, and yet its function is about the most trivial
in the whole library. An image is little more than a pointer to a buffer object. It is
not related by inheritance to the buffer class at all; instead, image contains a
variable that is of type buffer* and the funciton of most of the messages understood
by image is simply to pass the message on to the buffer object. Thus, the image
object is very small: one pointer, no matter how big the image is. Thus, image
objects may be passed as value arguments without difficulty or inefficiency.

This description of the image class will focus on the external operations while the
description of the buffer classes will detail internal operations.

Constructors

Image objects can be created in six ways:

The null constructor creates a lx1 INTEGER image.
image(image& im)

Simply copy the buf fer* in im. It does not copy the entire buffer. This
definition makes transfer of images as arguments quick and efficient.

image(int or. int nc, buffer-type bt)
Creates an nrxnc image of the specified buffer type (BYTE, INTEGER, REAL,
COMPLEX).

imaae(subscript s. buffer type bt)
Creates an nrxnc image of the specified buffer type (BYTE, INTEGER, REAL,
COMPLEX) using a subscript object to specify the image size.

image (buffer*)
Simply adopts the specified buffer.

image (imace.imaceconvert type)
Forms a new image as the product of two given images. The type of the new
image is the type of the first specified image. The convert type is used if
the second argument is complex and the first is not. This constructor is
used mainly in filtering operations.

Member functions

The first class of messages return or adjust information about the physical
configuration of the image buffer and the window of interest within it.

buffer* buffer addr()
Simply returns the pointer to the buffer.

buffer type type()
Returns the type (BYTE, INTEGER, REAL, COMPLEX) of the buffer.

char* storage-addrt)
Returns a char* pointing to the actual pixel array. This pointer must be
cast to the actual storage type of the buffer.

Imagelib/Bufferlib - 35

10/18/89 Imagelib/Bufferlib

int total bytes()
Returns the number of bytes in the pixel array in the buffer

int buffer size()
Returns the number of pixels in the buffer

in size_
Returns the number of pixels in the current window

subscript shape ()
Returns a subscript holding the size of the buffer and properly initialized
internally for use as a for loop index for manipulating the image.

image& reset()
Resets the buffer's window to be the whole buffer.

image& set window(subscript ulc)
Sets the upper left corner of the buffer's window at the indicated subscript
and its size to be the same as its current size or the rest of the image,
whichever is smaller.

image& set window(subscript ulc. subscript lrc)
Sets tFe window to the indicated upper left corner and lower right corner.

The following set of operations are defined for obtaining and setting individual
pixels in an image. The get messages must indicate the type of value requested
since member functions are not distinguished by their return value types, but the
set messages are overloaded since member functions are distinguished by their
argument lists.

With a subscript argument, the subscript is used as an offset within the current
image window. With an integer n, the integer is treated as the element number in
the buffer's storage array (which stores pixels in row-major order). The
convert_type argument determines whether the return value from a complex
image is obtained by REAL, IMAGINARY MAGNITUDE or PHASE conversion.

mt get i(int n. convert type)
int get i(subscript s, convert type)
double get r(int n. onvert -type)
double get r(subscript s. convert type)
complex get c(int n)
complex aet c(subscript s)

image& setfint n., int i)
image& set(subscript s. int i)
image& set(int n. double d)
image& set(subscript s. double d)
image& set(int n, complex c)
image& set(subscript s. complex c)

The following section consists of arithmetic operations on entire images. Note that
the operator=() does not copy pixels, only the buffer pointer. To create a copy, you
must use the copy message. The convert-type argument is always defaulted to
MAGNITUDE and is relevant only when operating on a COMPLEX image. Allowed
values are (REAL, IMAGINARY, MAGNITUDE, PHASE).

Imagelib/Bufferlib - 36

10/18/89 Imagelib/Bufferlib

image& operator=(image& im)
Copy the buffer* in im to the buffer* in self. This does NOT duplicate the
pixel array.

imaae convert(buffer type to. convert tve)
Returns a new image the same size and shape as self but having the
specified type.

init (double d)
Sets all pixels of an image equal to d.

image& copy(image& im. convert-type ct=MAGNITUDE)
Copy the current window in i m to the current window in se if.

image& add(image& im. convert tvoe ct=MAGNITUDE)
Add the current window in im to the current window in self.

image& sub(image& im. convert type ct=MAGNTTUDE)
Subtract the current window in im from the current window in se if.

image& mpv(image& im. convert type ct=MAGNITUDE)
Multiply the current window in im to the current window in s e l f.

image& div(imaae& im. convert-type ct=MAGNITUDE)
Divide the current window in self by the current window in im.

image& scale(double addl. double mpy. double add2)
Compute at each pixel new= (old+addl) *mpy+add2

image& lociscale()
Compute the log (base e) of each pixel. After log scaling you will usually
require some kind of contrast stetching since logs are usually small
numbers

image& stats0double& min. double& max. convert type)
Compute the min and max values in the current window.

image& statsl(double& mean. double& sd. convert type)
Compute the mean and standard deviation in the current window

The following section consists of debugging aids of various kinds.

image& print pixel(int n. ostream& o=cout)
Print a particular pixel in the buffer

image& print pixel(subscript s. ostream& o=cout)
Print a particular pixel in the current window

image& print window(ostream& o=cout)
Print the pixels in the current window

Commentary

The image class is the workhorse of COOL. In developing image I learned more
about C++ than any other class, and image is the class I most often need to
accomplish any research. This is ironic since my final design for image leaves it
mainly as a message shuffler that does very little itself.

The window feature is not well-tested.

Imagelib/Bufferlib - 37

10/18/89 Imagelib/Bufferlib

The decision to make image an intelligent pointer has paid for itself multiple
times over in the simplicity of the application code where I don't have to ever
worry about pointers to images or passing images as arguments or incompatible
storage types or encoded names specific to different types of images.

Imagelib/Bufferlib - 38

10/18/89 Imagelib/Bufferlib

Class buffer

Buffer is an abstract superclass for its type-specific derived classes. The main
function of buffer is to maintain some administrative data like the buffer size and
shape and to pass all messages down to the derived class.

Constructors

All of the constructors to buffer are protected since buffer is an abstract
superclass and should never be created by a user.

A buffer is created by a null constructor, or by specifying the buffer shape desired
either by a subscript or by a pair of ints.

The destructor for buffer is a public virtual destructor. It is virtual since the main
action required, deletion of the data array, must be handled by the appropriate
subclass since we cannot tell here what type the data array is.

Member functions

,Bu f fer maintains a reference count that is used by image::-image() to determine
whether the destructor for the image class should actually delete the buffer or
simply decrease the reference count. The following messages maintain the
reference count:

int ref (
Returns the current reference count

int new ref()
Increments the reference count and returns it.

int del ref()
Decrements the reference count and returns it. Normally, if the reference
count is zero at this point, the destructor should be invoked.

The following messages are concerned with the shape of the buffer and the shape
and position of the window within it.

int Size()

Returns the number of pixels in the current window
int buffer sizef)

Returns the number of pixels in the whole buffer
subscript shape()

Returns the shape of the buffer with the magic data initialized for use as in
a for loop index

virtual buffer tye type()
Returns the type of the buffer, which, of course, must be supplied by the
derived class.

Imagelib/Bufferlib - 39

10/18/89 Imagelib/Bufferlib

virtual int total bytes()
Returns the total number of bytes in the buffer (from the derived class)

virtual char* storage addr()
Returns a pointer to the beginning of the pixel data. This pointer must be
cast to the approriate type before use.

void resetf.
Resets the window to be the size of the whole buffer

void set window(subscript ulc)

Sets-the window so that its upper left corner is at the specified location and
its lower right comer is the lower right corner of the buffer.

void setwindow (subscript ulc, subscript irc)
Sets the window to have the indicated upper left and lower right corners

The following get and set functions modify elements of the buffer. If a subscript is
given, the subscript is an offset in the current window. If an integer is given, it is
used as an absolute offset in the buffer, which is stored in row-major order. The
convert_type is defaulted to MAGNITUDE and controls the mode of conversion
from complex to real when required.

virtual int get i(int. convert type)
virtual int aet i(subscript. convert_typel
virtual double get r(int, convert type)
virtual double get r(subscript. convert type)
virtual complex get c(intl
virtual complex get c(subscript)

virtual void set i(int, int)

virtual void set_i(subscriot.int)
virtual void set r(int. double)
virtual void set r(subscript.double)
virtual void set c(int. complex, convert type)
virtual void set c(subscript, complex. convert type)

The next group of member functions handles image arithmetic of various kinds.

virtual void initdouble
Set the whole image to the specified value

virtual void copy(buffer*. convert type)
Copy the window of the specified buffer to the current window in s e 1 f

virtual buffer* convert(buffer type. convert type)
Create a new buffer of the specified type to hold the data in the current
window, converted according to the specified mode (if self is complex and
the desired type is simpler). This message can be used to extract a
subimage.

The following arithmetic operations modify self to hold the result of the indicated
computation.
virtual void addlbuffer* b. convert tyPe)

Imagelib/Bufferlib - 40

10/18/89 Imagelib/Bufferlib

self=self+b
virtual void subbuffer* b. convert type)

self=self-b
virtual void mny(buffer* b. convert-type)

self=self*b
virtual void mpy2(buffer* b. buffer* c. convert type)

self=b*c
virtual void div(buffer* b. convert type)

self=self/b

virtual void scale(double addl=0-0.double mpy=0.0.double add2=0.0)
For each pixel p in the window, p=(p+addl)*mpy+add2

virtual void logscale()
For each pixel p in the window, p=log(p). Note that you will need to scale
after this.

virtual void stats0(double& min.double& max.convert type)
Compute the min and max of the window

virtual void statsl(double& mean.double& sdconvert type)
Compute the mean and standard deviation in the window

virtual void print pixel(int.ostream& o=cout)
Print the value of a pixel to cout.

virtual void print pixel(subscript. ostream& o=cout)
Print the value of a pixel to cout.

virtual void print window(ostream& o-cout)
Print the pixels in the window to cout.

Commentary

Buffer is an abstract superclass, so users should never need to create or
manipulate a buffer object. Operationally, messages sent to the buffer class are
shunted via the virtual function mechanism to the procedures provided by one of
the type-specific subclasses.

The indirection of having messages to image be forwarded to the buffer and
interpreted by subclasses gives us a high degree of flexibility and makes possible
the definition of type-independent procedures for operating on images. The type-
independence is not fully exploited in COOL at present, but the capability to do so
is present.

To use the buffer class and its subclasses directly, define a buffer* and assign to it
a new object of one of the derived classes. For example,

buffer* buf;
buf = new byte-buffer(256,256);

Imagelib/Bufferlib - 41

10/18/89 Imagelib/Bufferlib

Classes bytebuffer, int buffer, realbuffer, and
complexbuffer : public buffer

These classes, all subclasses of buffer, contain, manage, and operate upon the
pixel data itself. Messages are defined for operating on the data in type-dependent
ways. The type dependence is hidden from users by the buffer class.

Constructors

The null constructor creates a lx1 buffer of the appropriate type.
A buffer of the named type can be created with any desired shape by specifying the
number of rows and number of columns or by specifying a subscript holding that
information.

The destructor deletes the pixel array. The destructor must not be called until the
pixel array is ready to be destroyed. See the description of the reference count in
buffer.

Member functions

The following messages are concerned with the structure of the pixel array.

buffer-type type()
Returns the type of the buffer, which, of course, must be supplied by the
derived class.

int total bytesfl
Returns the total number of bytes in the buffer (from the derived class)

char* storage addr()
Returns a pointer to the beginning of the pixel data. This pointer must be
cast to the approriate type before use.

The following get and set functions modify elements of the buffer. If a subscript is
given, the subscript is an offset in the current window. If an integer is given, it is
used as an absolute offset in the buffer, which is stored in row-major order. The
convert_type is defaulted to MAGNITUDE and controls the mode of conversion
from complex to real when required.

int get i(int. convert type).
int get i(subscript. convert-type)
double get r(int. convert type)
double get r(subscript. convert-type)
complex get_c(int)
complex get c(subscript)

void set i(int. int)
void set-i(subscript.int)
void set r(int, double)

Imagelib/Bufferlib - 42

10/18/89 Imagelib/Bufferlib

void stt r(subscript. double)
void set c(int. complex, convert type)L
void set c(subscript. complex. co nvert type)

The next group of member functions handles image arithmetic of various kinds.

void init (double)
Set the whole buffer to the specified value

void copy(buffer*. convert type)
Copy the window of the specified buffer to the current window in s e 1if

buffer* convert (buffer type. convert type)
Create a new buffer of the specified type to hold the data in the current
window, converted according to the specified mode (if self is complex and
the desired type is simpler). This message can be used to extract a
subimage.

The following arithmetic operations modify self to hold the result of the indicated
computation.

void Add(buffer* b. convert type)
self=self+b

void sub(buffer* b. convert type)
self=self-b

void mrov(buffer* b. convert type)
self=self*b

void mov2(buffer* b. buffer* c. convert-type)
sel1f=b *c

void div(buffer* b. convert type)

self=self/b

voi I(scale(double addil=O-O.double mPy=O.O.dnuble add2=O.O)
For each pixel p in the window, p=(p+addl)*mpy+add2

void logscale()
For each pixel p in the window, p=log(p). Note that you will need to scale
after this.

void stats.O(doubhle& min~douhler. max.convert type)
Compute the min and max of the window

void statsl(double& mean.double& sd.convert tvope)
Compute the mean and standard deviation in the window

void print pixel(int.ostream& o=cout)
Print the value of a pixel to cout.

void print pixel(subscript. ostream& o=cout)
Print the value of a pixel to cout.

void Drint window(ostream& o=cout)
Print the pixels in the window to cout.

Commentary

Imagelib/Bufferlib - 43

10/18/89 ImagelibfB ufferlib

The logscale message works only on real-buf fer objects.

Imagelib/Bufferlib - 44

10/18/89
Misclib

Miscib
complex histogram random-variate
magpha ndgaussian

subscript
timer gaussian_variate uniform variate

Misclib contains a collection of very useful miscellaneous classes.

Misclib - 45

10/18/89 Misclib

Classes complex and magpha

Classes complex and magpha implement both the real-imaginary and
magnitude-phase forms of complex numbers. In both cases the complex values
are stored as a pair of floats.

Constructors

The null constructors initialize the value to (0,0). Constructors are provided that
accept

a pair of float or double values to be used as the components of the
specified representation,

a variable of the same type (a copy constructor), and
a variable of the partner type (a conversion constructor).

No destructor is necessary.

Member functions

Member functions for complex and magpha fall into four categories: data access,
simple operations, arithmetic operators, and advanced operations.

The data access functions (identical for both classes) return float or double
values and are as follows:
double real()

Returns the real part
double imago)

Returns the imaginary part
double macr)

Returns the magnitude
double mag 2()

Returns the magnitude squared
double phase()

Returns an angle from -7c to n)
double convert (convert type)

Returns a double by applying the specified convert type, which can be
REAL, IMAGINARY, MAGNITUDE, or PHASE . These symbols are defined in
cool. h.

Note: The real and imag messages return float& from complex and double
from magpha. Thus, they may be used to set components of a complex. Similarly,
mag and pha return float& from magpha and double from complex.

Simple operations on complex numbers include
complex coni(O

complex conjugation

Misclib - 46

10/18/89 Misclib

multiplication by i

complex reciprocal
exchanae (x)

where x is the same class as self and its action is to exchange the values
of self andx

pintoL.
Complex objects are printed with syntax (12.3,0. 0) while magpha objects
are printed with syntax [5.7 exp (1.2 i)].

The arithmetic operators defined for both classes are as follows:
S= != unary- * * / /

Additional operators defined for complex only are:
+ += binary - -=

The following advanced operations are defined for complex only:

Commentary

The complex and magpha classes were among the first classes I wrote in C++.
Complex has proven its worth, especially in regard to complex images. Magpha
has not been as useful as I envisioned when I wrote it. Perhaps magpha should be
made a derived class of complex so that the two classes would be compatible in
more situations?

Since they were written so long ago, it would probably be possible now to shorten
both class definitions by eliminating redundari~messages. For example, having
three versions of operator= () to cover assignments of magpha, complex, or
double values is probably massive overkill. The C++ translator is now more
intelligent about conversions than it was when I started using the language, and
the automatic type system might be sufficient now to handle these conversions
based on only one version of operator= ().

The value of inlining functions could be evaluated by timing experiments on large
images stored in complex form. The massive number of repeated operations
required for example in scaling or FFT computations would probably reveal just
what we do or do not gain by using inline functions.

The complex and magpha definitions depend on each other directly. This mutual
dependency is handled by a forward class definition inserted in the . d files of both
classes (though only one such insertion, for the class whose . h file is read first, is
really required). Since complex is the first of these class definitions to be read
during compilation the constructor that creates a complex from a magpha can not
be inlined: since the magpha class definition is not yet entered, the compiler does
not know what operations on magpha objects are available. Thus, the
complex (magpha&) constructor and the operator= (magpha&) functions are the
only simple member functions in these two classes that are not inlined. Should
one reverse the order in which these class definitions are read during

Misclib - 47

10/18/89 Misclib

compilation, syntax errors will result until the functions in magpha that need to
know the internal structure of complex are removed from the h file.

Misclib - 48

10/18/89 Misclib

Class histogram

The histogram class computes histograms and cumulative histograms of images
and patterns. A histogram is defined by three parameters: low, high, and
delta. Low and high are the extreme values covered by the histogram. Any
values less than low are counted as underflows; any values greater than high are
counted as overflows. The histogram bins are of size delta. The number of bins
is computed from low, high, and delta and that many integer values (plus two to
count the overflows and underflows) are allocated in the histogram buffer.

Constructors

A copy constructor and a minimal destructor are provided. The rest of the
constructors are as follows:

histogram(double low, double high. double delta)
Allocates the required memory and sets the buffer equal to zero. I have yet
to discover an interesting use for it.

histogram(image im. double low, double high. double delta.
convert-type ct)

Computes the histogram of an image. The parameters default to the
following values: low=0.0, high=255.0, delta=l.0, and ct=MAGNITUDE. The
ct parameter is used if the image is stored in complex form and is ignored
otherwise.

histogram(oattern& p, double low, double high. double delta)
Computes the histogram of values in a pattern. The parameters default to
the following values: low=0.0, high=f00.0, dei+ a=1.0.

Member functions

The member functions fall into three categories: data access, computation, and
presentation.

Data access functions available for histogram are as follows:
int sizeO

Returns the number of bins in the histogram, including the underflow and
overflow bins.

int* storage-addro)
Returns a pointer to the bin array beginning with the underflow count.

int& operator l tint i)
Returns the ith bin count, where 0 is the underflow count and entry
size () -1 is the overflow count.

histogram& info(double& low. double& high. double& del. int& size.
int& under. int& over)

Returns about everything you would need to know in one call. Note that the
data is returned in the arguments.

Misclib - 49

10/ 18/8 9 Misclib

Computational member functions are as follows:
histogram& operator=()

Assigns the values of one histogram to another.
int no

Returns the number of items entered into the histogram, including
overflows and underflows.

int max valuef{
Returns the maximum count in any bin, excluding the underflow and
overflow bins

void mode(int& freq. double& value)
Returns in the arguments the number of elements in the bin and the lower
bound on the bin having the largest number of entries, underflow and
overflow bins excluded.

double median()
Returns the lower bound of the bin containing the n/2 entry in the
histogram, counting from the underflow bin.

void statsl(double& mean. double sd)
Returns the mean and standard deviation of the values in the histogram,
underflow and overflow excluded. The effect is to fit a normal distribution to
the histogram. The values are computed using bin numbers and then
converted to indicate the lower bound of the mean bin and the deviation in
the scaled units.

histoaram cumulative()
Returns a new histogram with the same parameters as the current one,
but the bin counts are the cumulative bin counts of the current histogram.
The accumulation includes the underflow bin.

Two presentation messages are provided, as follows:
histogram & Drint(ostream& o)

Prints the parameters and bin values to an output stream. The output
stream is defaulted to cout.

polyobject* ploto)
Returns a polyobject* containing a Polyl ine holding the vertex
coordinates of a plot of the histogram fitting into the unit square with
corners at (0,0) and (1,1). Thus, this plot is ready to send to the display
devices defined in displaylib.

Commentary

The histogram class works all right, but there is little else to recommend it. The
printouts are pretty crummy and the plots are mediocre. It would not be difficult
to improve this class, but still, it does work.

In the / us r / image library developed at UNC-Chapel Hill, the histogram of an
image is stored on disk with the image. I still believe that that was a terrible
mistake. I strongly prefer treating the histogram as a separate object from the
image it describes having its own uses and representations.

Misclib - 50

10/18/89 Misclib

It is not clear whether some of the values being returned from the computational
functions are well defined. An option to consider if for all of the computationalfunctions to return bin numbers and have another message to convert a bin
number to a minimum or midpoint of a bin's range.

Misclib - 51

10/18/89 Misclib

Class nd_gaussian

The ndgaussian class implements an n-dimensional Gaussian density. The
mean vector and covariance matrix may be specified by the user. This density
can be spatially sampled, the Mahalanobis distance of a point to the density may
be computed, and the nd-gaussian can be used as the probability density for a
random number generator.

Constructors

The default constructor creates a 2D Gaussian with zero mean vector and identity
covariance matrix. A copy constructor is provided.

nd gaussian (int d)
Creates a d-dimensional Gaussian with zero mean vector and identity
covariance matrix.

nd gaussian(pattern& p, sq matrix& m)
Creates a Gaussian with the same dimensionality as the length of p and
with a covariance matrix as given by m. An error abort occurs if both
dimensions of m are not equal to the length of p. The arguments are not
modified by this constructor.

Member functions

pattern get meano)
Returns the mean vector as a pattern.

sa matrix aet covariance()
Returns the covariance matrix as a sq-matrix.

double normfactor()
Returns the real normalizing constant

1

2nd/ y 11 /2

where d is the dimensionality of the nd_gaussian, I is the covariance
matrix, and I I I denotes the determinant of Z.

nd gaussian& set mean(pattern& p)
Sets the mean vector of the nd gaussian to p. The argument is not
changed.

nd gaussian& set covariance(sg matrix& m)
Sets the covariance matrix to m. The argument is not changed.

double z dist(pattern& p)
double oierator-(aAttern& D)

Return the Mahalanobis distance of p from the nd_gaussian. This distance
is computed according to the formula

[(p-lg) I (pcb)5

Misclib - 52

10/18/89 ivnsciu

pattern generate()
pattern operator>>(pattern& p)

Return a pattern randomly generated according to the density given by the
nd_gaussian. The operator>> also returns the generated pattern in its
argument, p.

Commentary

The ndgaussian class is an effective encapsulation, hiding away many
nettlesome details that could distract one from more important tasks. The set of
operations available now is minimal but it has sufficed for the uses I have made of
the class.

I suspect that the current method for generating random patterns from the
nd-gaussian is buggy.

Also, the results for dimensionalities greater than 3 should not be trusted until
the inverse functions in the matrix side of the linear algebra tree are verified (and
since they are probably wrong, corrected).

Misclib - 53

10/1889 Misclib

Class subscript

The subscript class encapsulates the nature of indexes to multidimensional
arrays and is used with images and in the 2D side of the linear algebra tree. The
subscript class provides a variety of constructors and is optimized for fast
execution as the controlling index of far loops. Functions for obtaining the
subscript of neighbors of a location are also provided. Subscript also contains
the critical code for implementing rectangular regions-of-interest in images and
matrices.

Subscripts contain a set of internal variables (I will call them "magic values"
later) that are used to implement regions of interest and fast indexing for f or
loops. These internal variables must be initialized correctly with respect to the
array or buffer to be indexed. They are the maximum allowed values of the
subscript indices, the offset into the matrix of the upper left front corner of the
region of interest, and the true row dimension of the full array. A subscript for
manipulating a 256x256 image must know the true size of the array it is indexing
in, so the subscript must be constructed in such a way as to initialize the magic
values. For example, subscript s(0,0,im.shapeo); would do the job. So would s =
subscript(O,O,subscript(256,256)); and other forms as well.

Constructors

Null and copy constructors are provided. The null constructor initializes the
subscript to (0,0) and the copy constructor copies everything including the magic
values.

The following forms of the constructor are available:
initial value maximum offset

subscript: :subscript (int. int)
subscript: :subscript(int. int, subscript)
subscript: :subscript(int. int. subscript, subscript)
subscript: : subscript (subscript)
subscript: :subscript(subscript, subscript)
subscript: :subscript (subscript. subscrioto subscriot)

The first argument(s) specify the initial value of the subscript; the subsequent
arguments specify the maximum values of the subscript and the offset of the
subscript in its array. The maximum field of the subscript given as the maximum
defines the actual array size unless it is less than the specified value of the
maximum, in which case the specified value is taken as the actual array size.

Member functions

int rl
Return the current column subscript

Misclib - 54

10/18/89 Misclib

Return the current row subcript
intZ iazLi

Return the product of the row and column values. This is intended as the
size of the ROI above and left of the indicated location.

int maxsize)
Returns the product of the row and column of the max entry. This is the
number of elements in the whole array (not the ROI).

subscript get max(o
Returns a subscript whose value is the max entry of the current
subscript.

subscript& print (ostream&)
Prints the subscript to the ostream, which is defaulted to cout. The
syntax is [5, 12].

The next group of member functions concern the conversion of the subscript into
an integer array index.

int index(subscript& max. subscript& off)
Returns the index using the subscript's own index value and the supplied
max and offset values.

int index(subscriot& dim)
Returns the index using the given max and an assumed 0 offset.

When using the subscript as the controlling variable of a for loop, the following
member functions should be used:

Initializes the subscript to (0,0) and prepares the magic values for fast
operation in the for loop.

int test()
Returns 1 if you have finished passing through the array, 0 otherwise.

subscript& operator++()
Modifies the magic values to point to the next item in row-major order and
makes appropriate corrections for end-of-row and end-of- array.

int indezLL
Returns the index precomputed by the above functions.

To use a subscript to control a for loop, the for loop structure should be
for(s.ini:() ;s.test () ;s++)

Inside the loop, the value of the index is obtained by s. index (. Inside the loop,
the s . r () and s . c () functions still give correctly the current row and column
coordinates.

A variety of assignment and arithmetic operations are defined on subscripts.

subscriot& set to max)
Sets the subscript's current value equal to its max entry.

Misclib - 55

10/18/89 Misclib

subscript& operator=(subscript&-
Copies all parts of the subscript, including the magic values.

Several set functions are available with argument sequences as follows:
subscript& set(int. int)
subscript& set(int. int. subscrip-)
subscript& set (subscript)
subscript& set (subscript. subscript)
As before, the second subscript argument sets the maximum values of self.

Arithmetic operators defined on subscripts are as follows:
The += and -= operations modify the current value of self without changing the
magic values.
subscript& operator+=()
subscript& operator-=()

The + and - operations create a new subscript with the magic values of self.
subscript operator+()
subscript operator- ()

subscript min(subscript)
Returns a new subscript containing in each position the minimum of the
corresponding position in the argument and self.

subscript max(subscriot)
Is analogous for the maximum values.

subscript clamp()
Is used to ensure that a subscript is in its bounds. If an entry is less than
zero, clamp () sets it to zero. If the entry is greater than its max allowed
value, it is set to the max allowed value.

Finally, there is a series of functions that return subscripts of the neighbors of
the currently indexed location. The names encode what the function does to the
two indices: nul is nothing, dec is decrement and inc is increment. If we assume
the subscripts are interpreted as (row,col) then their action is as follows:

function returned location
incinc () below right
incdec() below left
decinc () above right
decdec() above left
nulinc() right
nuldec() left
incnul() below
decnul() above

Commentary

Subscript strikes me at different times as either one of my most elegant
abstractions or as one of the biggest kludges in the library. By encapsulating the

Misclib - 56

10/1889 Misclib

notion of "array indexes" in this class, I have, in principle, removed indexing
concerns from all kinds of images and arrays. In addition, when I created this
abstraction, the ability to handle rectangular regions of interest - rectangular
subregions of an a,.Tay - fell out almost for free! And the mechanism for handling
for loops looks like a big win both in code complexity and in speed of execution.

Unfortunately, it seems that I am still bound far too closely to the notion of two-
dimensional arrays and 2D subscripts. I keep running into trouble when I try to
extend the notion of subscript to higher dimensions, especially in regard to
neighborhoods. The biggest kludge in subscript is incdec, decinc and all that
trash. Send me your ideas.

I have found little use for the arithmetic operations on subscripts. I use the for
loop constructs every day.

To use the for loop constructs correctly, the subscript used as the for loop index
must know about the real size of the buffer and the size of the region of interest
in the buffer. How does it get this information? By asking the buffer (or,
equivalently, the image)! Assuming that im is an image, I have used the
constructions

subscript s(im.shape());
and

s=im. shape or subscript s=im. shape
equally well. The key is that the subscript returned by image: : shape () has all
of the necessary magic values defined for that image. Now, if one changes the
image size or the parameters of the region of interest, then the index subscript is
no longer valid, but it can be updated by another call to im. shape (.

Misclib - 57

10/18/89 Misclib

Class t

Timer provides basic timing facilities suitable for profiling programs.

Constructors

A null constructor is provided that sets the timer to OFF with no time
accumulated and with no name.

The constructor timer (char* name) creates a timer with no time accumulated,
in the OFF state, and with the name specified (up to 15 characters).

Member functions

timer& set name(char* name)
Sets the name of the timer to the given character string (15 character limit).

timer& start()
Records the current time for use as the beginning of an interval to be timed.

timer& stopo
Records the current time as the end of the current interval. The difference
between the time recorded by start () and the current time is added to the
elapsed time accumulator for this timer.

timer& reset(o
Sets the accumulated time for this timer to 0. The run state (RUNNING or
STOPPED) of the timer is not changed.

timer& report)
Prints to cout the state of the timer, including its name, its run state, the
number of intervals recorded, and its cumulative elapsed time.

Commentary

The timer operates on clock elapsed time only, not CPU time. Either adding an
option to select CPU time or simply incorporating it in the operation of the class
would be welcome.

This is a nice, effective encapsulation of a multitude of details involving UNIX
system procedures and . h file inclusions. I have used this class to profile
procedures in a long program. Use of the class was made easier by allocating an
array of timers and then defining macros to turn them on and off:

#define ON(num) (timers[num] .start(;}
#define OFF(num) {timers(num] .stop() ; }

Invocations of these macros were distributed through the program at appropriate
critical points.

The present timer class has no copy constructor or operator= () and so it cannot
be passed as an argument to a procedure. I can't think of why I would want it to

Misclib - 58

10/18/89 Misclib

be - profiling tools should themselves keep a low profile, so I find the strategy of
making the timers global to be effective and acceptable.

I considered writing the timer class to hold an array of timers, but I found that
declaring the array of timers in the program being profiled was simple enough,
especially with the macros above, and of course, the timer class is simpler as just
one timer.

Misclib - 59

10/18/89 Misclib

Class random variate

Random variate is an abstract superclass providing services to its subclasses

concerned with producing variates with different probability distributions.

Constructors

The protected constructor random variate () is invoked by the subclass
constructors.

Member functions

This is a protected member function that uses the UNIX random () function
to produce a uniformly distributed random number in the range (0..1).

void new seed(int)
Provides a new random number seed to the UNIX random () function. If the
argument is nonzero, the argument is used as the new seed. If the
argument is zero (the default) then a new seed is generated from the UNIX
internal clock. This automatically generated seed value is not available to
the programmer, so if a reproducible sequence of random numbers is
desired, the seed should be provided explicitly.

Commentary

Random variate is an example of effective information hiding. This class
encapsulates (hides) the operation of the UNIX random number generator in a
manner that can be shared by subclasses. It does no more than that, but in doing
so, it hides the usage of the timer to generate seeds, the random () and s random ()
functions in the UNIX system, and the value of BIGNUM, which is the largest
representable integer, used to convert the integer output of random () to a double
in the range (O..1).

Misclib - 60

10/18/89 Misclib

Classes uniform variate and gaussian variate
:publi' randomvariate

These classes are subclasses of random variate used to generate random
numbers with uniform or gaussian distributions, respectively.

Constructors

Both classes have public constructors that take two doubles. For
uniform variate, the arguments are interpreted as the high and low limits of
the uniform density. The arguments are defaulted to 0.0 and 1.0. For
gaussian variate, the arguments are interpreted as the mean and standard
deviation of the desired distribution. The arguments are defaulted to 0.0 and 1.0 (a
standard Normal density).

Member functions

Note that the function new seed (int) is inherited from random variate.

Integer or real values may be obtained either by a member function call or by
using operator>>. Integer values are obtained by truncating the double value
computed by the value () function. The member functions available are:

double value()
int ivalueo(
int operator>> (int)
double operator>> (double)

The operators both set their arguments equal to the result and return the result as
the value of the expression.

Commentary

The value returned for a uniform variate is low+U(0,1)*(high-low), where
U(0,1) is a uniformly distributed random variate on the interval (0,1) provided by
the superclass. The value returned for a gaussian variate is mean+G(0,1)*sd
where G(0,1) is a standard Normal random variate computed in
gaussian variate: :value() from U(0,1) random variates using a well-known
algorithm.

Misclib - 61

10/18/89 Nseqlib

Nseqlib
n sequence

pattern matrix

gpoint gvector m matrix Polyline

matrix2X2 matrix3X3 matrix4X4I
Xform matrix

Nseqlib defines classes of 1D and 2D numerical sequences, including 1D arrays,
points and vectors, and various kinds of matrices. The integration of these
classes through the inheritance hierarchy is of particular interest. This
hierarchy is called the Linear Algebra Tree (LAT).

Nseqlib - 62

10/18/89 Nseqlib

Class n..sequence

A numerical sequence is a 1D array of doubles with some minimal operations

defined on them.

Constructors

n s9eguence()
Construct an nsequence of length 1.

nsequence(n sequence& ns)
Duplicate the given nsequence into self.

n sequence(int i)
Construct an n-sequence of length i.

-n sequence()
Delete the data array.

Member functions

int -,~izeoD

Return the number of elements in the n-sequence.
char* storage addr()

Return a pointer to the data array that must be cast to double before use.
n sequence& zero()

Set all elements of the data array to zero.
nrseauence& copy(n seouence& ns.int offsetns=O.int offset=O)

Copy elements of ns into self, beginning with element offsetns of ns and
with the offset element of self. Elements are copied until the end of
either array is reached. The size os se 1f remains unchanged.

n seQuence& replace(n seguence& ns)
The data array in self is deleted and a new array is created and assigned
to self that is identical with that in ns.

The following are element-by-element operations on the data array of self.
Notice that self is changed by these operations.

n sequence& negate(
Negate each element of s e f

n seQuence& scale(double)
Multiply each element of se 1 f by the indicated scalar

n sequence& add(n sequence&)
Add the each element of the given n sequence to the corresponding
element of self. Stop when either array ends.

n seguence& sub(n seQuence&)
Subtract each element of the given n_sequence from the corresponding
element of self. Stop when either array ends.

n sequence& print(int number to print, ostream& o=cout)

Nseqlib - 63

10/18/89 Nseqlib

Print to the indicated ost ream (cout by default) the indicated number of
elements of self.

int operator==(n sequence&)
Determine whether the given nsequence is equal to self. To be equal, the
sizes must be equal, then the contents must be equal.

n sequence& operator=(n sequence& ns)
The data array in se if is deleted and a new array is created and assigned
to self that is identical with that in ns.

double& operatorl Mint index)
Return a reference to the indicated element of s e l f. Note that since a
reference is returned, modification to n_sequence values can be performed
using this message.

Commentary

Nseqlib - 64

10/18/89 Nseqlib

Class pattern:public nsequence

A pattern is a one dimensional array of values that can be interpreted as the
coordinates of a point or vector in a multidimensional space. It differs from an
n-sequence mainly in the set of operations available.

Constructors

pattern {

Create a pattern of length 1.
pattern(int s)

Create a pattern of length s.
pattern(ipattern& p)

Duplicate pattern p into self.
pattern(subscript& s)

Create a pattern of length 2 initialized to the value of s.

Member functions

double length()
Return the length of the pattern (root sum of squares of feature values, or
square root of dot product with itself).

pattern normalize()
Return a new pattern equal to the product of self and the reciprocal of its
length.

pattern transform(matrix& m)
Return a new pattern equal to the product of self and the matrix: form
dot products of self with the columns of m. The length of self must equal
the number of rows of m. The length of the result is the number of columns
of m.

double dotprod(pattern&)
Return the dot product of s e i f and the argument

double simpson(double width=1.0)
Return the integral of the curve defined by the p a tt e rn, where the interval
between features is width/ (size-l) and the integral is computed using
Simpson's Rule. The size must be odd.

pattern& operator=(pattern& p)
Delete the data array and replace it with a new one having the same size
and content as the argument.

pattern& operator=(subscript& s)
Delete the data array and replace it with an array of size 2 having the value
of the argument.

The following messages return the result of a computation on self, and do not
modify self.

pattern operator-()
Return a new pattern the same size as self with the values negated.

Nseqlib - 65

10/18/89 Nseqlib

pattern operator+(pattern& p)
Return a new pattern computed as the sum of self and p. If p is shorter
than self, the extra elements of self are unchanged; if p is longer, the
extra elements of p are ignored.

pattern operator- (pattern& D)
Return a new pattern computed as self-p. If p is shorter than self, the
extra elements of seif are unchanged; if p is longer, the extra elements of
p are ignored.

pattern operator* (double d)
Return a new pattern computed by multiplying through self by d.

double operator*(Pattern& p)
Return the dot product of s e 1 f and p.

pattern operator* (matrix& m)
Return a new pattern resulting from multiplying self by the matrix.

Commentary

More member functions are needed to support summation of the elements of a
pattern and missing data flags.

Nseqlib - 66

10/18/89 Nseqlib

Class gpoint:public pattern

Gpoint implements points in homogeneous 3-space for use in computer graphics,
inheriting many of its operations from pattern. Gpoint differs from gvector in
the operations that are allowed and the desired effects of some of the operations.
Formally, the w coordinate of a gpoint is always equal to 1.0.

Constructors

gioint Q
Construct the uoigin.

gpoint(gpoint& p)
Copy the argument.

gpoint (gvector& v)
Copy the vector's coordinates and make it a point.

apoint (subscript& s)
Copy the subscript's value into the x and y components

gpoint(double x. double y. double z=0.0)
Set the components as indicated.

Member functions

double x)
Return the x coordinate.

double y()
Return the y coordinate.

double z()
Return the z coordinate.

gooint& set(double x. double v. double z=O.O)
Set the coordinates as indicated.

gpoint& homogenizeO(
If the w coordinate is not 1, divide through by w.

double distance (
Compute the distance of the gpoint from the origin. Don't use the
homogeneous coordinate w in the distance computation.

double distance(gpoint& p)
Compute the distance from self to p.

gpoint& reflect ()
Set self to its reflection about the origin (negate x, y, and z).

gooint& reflect (gpoint& p)
Set self to its reflection about p.

gpoint& translate (double x. double y. double z)
Translate se lf as indicated.

gpoint& translate(gvector&v)
Add the vector argument to self.

gpoint& print();
Print self using syntax [1.0,2.0,3.0].

gpoint& operator=(gpoint& n)

Nseqlib - 67

10/18/89 Nseqlib

Set s e f equal to p.
gpoint& operator=(Qvector& v)

Copy the x, y, and z coordinates of the gvector into self.
gpoint operator-()

Return a new gpoint with negated x,'y, and z coordinates.
void ooerator+(gpoint&)

Print an error message and quit.
gpoint operator+(vector& v)

Return a new gpoint resulting from adding the coordinates of self and v.
avector operator-(apoint& o)

Return a new gvector resulting from subtracting p from self.
gpoint operator-(avector& v)

Return a new gpoint resulting from adding gvector v to self.
gpoint operator* (matrix& T)

Return a new gpoint resulting from transforming self by T.
gDoint ooerator* (double d)

Return a new gpoint resulting from multiplying the x, y, and z
coordinates of self by d.

Commentary

Nseqlib - 68

10/18/89 Nseqlib

Class gvector:public pattern

Gvector implements vectors in homogeneous 3-space for use in computer
graphics, inheriting many of its operations from pattern. Gvector differs from
gpoint in the operations that are allowed and the desired effects of some of the
operations. Formally, the w coordinate of a gvector is always equal to 1.0.

Constructors

Construct a zero vector.
gvector (gvector& v)

Construct a copy of v.
gvector (gpoint& D)

Construct a vector with the same x, y, and z as p.
gvector(subscript& s)

Construct a 2D vector with x= column and y=rows
gvector(gpoint& p, gpoint& g)

Construct the vector p-q.
gvector(double x.double v.double z=0.0)

Construct the indicated vector.

Member functions

double x()
Return the x coordinate

double v()
Return the y coordinate

double z()
Return the z coordinate

gvector& set(double-x. double y, double z=0.0)
Set self as indicated.

gvector normalize()
Return a new vector computed by multiplying through self by the
reciprocal of its length.

avector crossprod(gvector&)
Return a new vector equal to the cross product of self and the argument.

gcvector& print ()
Print self to cout with syntax <1.0,2.0,3.0>.

gvector& operator=(gvector& v)
Copy the elements of v into self.

gvector& operator=(gpoint& 0)

Copy the x, y, and z coordinates of p into self.
gvector operator-()

Return a new gvector that is the negative of self.

Nseqlib - 69

10/18/89 Nseqlib

gvector operator+(gvector& v)
Return a new gvector that is the sum of self and v.

apoint operator+(gpoint& p)
Return a new gpoint that is the sum of self and p.

gvector operator-(gvector& v)
Return a new gvector that is equal to self minus v.

void operator-(gpoint&)
Print an error message and halt. This is illegal.

gvector operator* (double d)
Return a new gvector equal to self scaled by d.

gvector ooerator*(matrix& T)

Return a new gvector resulting from multiplying self by matrix T.
double operator*(gvector& v)

Return the dot product of s e i f and v.
gvector operator%(gvector& v)

Return a new gvector equal to the cross product of self and v.

Commentary

Nseqlib - 70

10/18/89 Nseqlib

Class matrix:public n. sequence

A matrix is an n-sequence that knows about rows and columns.

Constructors

Create a lx1 matrix of zero.
rratrix (matrix& m)

Create a duplicate of m.
matrix (subscript s) : (s.size(I

Create a matrix shaped as indicated in the value of s.
matrix(int r. int c) o (r*c)

Create a matrix shaped as indicated: r rows and c columns.

Member functions

subscript shapeo)
Return the shape of s e f.

Fat:ern get rowint)
Return a pattern set to the length and content of the specified row of self.

matrix& set row(int. pattern&)
Set thespecified row of self equal to the specified pattern.

pattern get col(int)
Return a pattern set to the length and content of the specified column of
self.

r.atrix& set -ol(int. pattern&)
Set the specified column of self equal to the given pattern.

ratrix& replace(matrix& m)
Delete tI e data array and recreate it to be a duplicate of m's data array.

.a- rix multi~ yimaria&j
Return a matrix computed as the product of self and the argument

rnatrix trans- ose (l
Return a new matrix equal to the transpose of self.

ratrix_ prinv (ostream& o=coutl
Print se f to cout.

marrix& opertor=(matrix& m)
Delete the data array and recreate it to be a duplicate of m's data array.

matrix operc.tor- ()
Return a aew matrix in which each element of self is negated.

matrix operator-imatrix&)
Return a new matrix computed as self minus the argument.

matrix operator+ (matrix&)
Return a new matrix computed as the sum of self and the argument.

matrix o!erator* (double d)
Return a new matrix in which each element of self is multiplied by d.

matrix operator*(matrix& m)

Nseqlib - 71

10/18/89 Nseqlib

Return a new matrix equal to the product of self and m.
mnatrix operator' ()

Return a new matrix equal to the transpose of self.
matrix& operator-((matrix&)

Subtract the argument from se l f.
matrix& operator+=(matrix&)

Add the argument to s e f.
matrix& operator*=(double d)

Multiply each element of se if by the constant.
matrix& operator*=(matrix& m)

Multiply self by m in-place.
double get(subscript s)

Return the indicated element of self.
double get(int r.int c)

Return the indicated element of self.
matrix& set(subscript sdouble d)

Set the indicated element of sel f to the given value.
matrix& set(int r.int c.double d)

Set the indicated element of se if to the given value.
double& operator() int, int)

Return a reference to the indicated element of self. Note that this allows
the element to be changed directly by the application.

Commentary

Nseqlib - 72

10/18/89 Nseqlib

Class sqmatrix:public matrix

A sqcmatrix is a matrix having an equal number of rows and columns. Some
additional operations can be performed on such matrices.

Constructors

Construct a lx1 matrix of zero.
sq matrix(sa matrix& m)

Duplicate the given matrix.
sq_matrix(int s. int t=01

Create an sxs matrix initialized to zero if t=O and to an identity matrix if
t=1.

Member functions

int dimension('
Return the dimension of s e 1 f.

sq matrix& identity()
Set self to an identity matrix.

samatrix minor matrix(int r. int cl
Create a new sqmatrix of dimension one less than self containing all of
self except the rth row and the cth column.

dgouble determinant (
Return the determinant of self.

sq matrix& inverse()
Invert self in-place.

sa matrix& ooerator=(sq matrix& m)
Make self a duplicate of m.

sq matrix& operator=(matrix& m)
Make s e if a duplicate of m. The dimensions of m must be equal.

sq matrix operator-()
Return a new sq_matrix in which the elements of self are negated.

sa matrix operator+(sq matrix&)
Return in a new sq_matrix the sum of self and the argument.

sq matrix operator-(sq matrix&)
Return in a new sq_matrix self minus the argument.

sq matrix operator*(double)
Return a new sq_matrix with each element of self multiplied by the
argument.

sq matrix operator* (sqmatrix&)
Return a new sq_matrix equal to the matrix product of self and the
argument.

matrix operator* (matrix&)
Return a new matrix equal to the product of self and the argument.

sqamatrix& onerator+=(sa matrix&)
Add the argument to self. The sizes must agree.

Nseqlib - 73

10/18/89 Nseqlib

5q matrix& operAtnr-=(sgq matrix&)
Subtract the argument from s elf.- The sizes must agree.

sq -matrix& operatcr*=(double)
Multiply each element of s e 1if by the argument.

sa matrix& ooerator*=(sq matrix&)
Multiply self by the argument.

sa matrix operator! ()
Return a new sq matrix equal to the transpose of self.

sq matrix operator-()
Return a new s q mat r ix equal to the inverse of s elf .

Commentary

We need better implementations of determinant and inverse. Also, computation

of eigenvectors and eigenvalues are needed.

Nseqlib - 74

10/18/89 Nseqlib

Classes matrix2X2, matrix3X3, and matrix4X4
:public aq matrix

These classes are defined to allow optimized operations for these small matrices.
These classes accept identical messages, So only mat rix2X2 will be described
below.

Constructors

Construct a 2x2 zero matrix.
matrix2X2 (int typ)

If typ=0, construct a 2x2 zero matrix. Otherwise construct a 2x2 identity
matrix.

matrix2X2 (matrix2X2& m2)
Duplicate the given matrix.

Member functions

rnatrix2X2& identity()
Make selif an identity matrix.

matri-x2X2& zeroo)
Makes sel1f a zero matrix.

double determinantoC
Return the determinant of self.

ratrix2X2& inverseo)
Invert self in-place.

ratrix2X2& operator= Cmatrix2X2&)
Make s e if a duplicate of the argument.

matrix2X2& op erator=(sg matrix&)
Make self a duplicate of the argument. Sizes must agree.

ratrix2X2 operator-()
Return a new mat rix2X2 with each element of self negated.

rmatrix2X2 ooerator+ Cmatrix2X2)
Return in a new matrix2x2 the sum of self and the argument.

rnatrix2X2 op erator- (mat rix2M2)
Return in a new matrix2x2 the result of self minus the argument.

mat rix2X2 operator* (double)
Return a new mat rix2X2 with each element of self multiplied by the
argument.

matrix2X2 operator* (matrix2X2&)
Return a new mat rix2X2 equal to the matrix product of self and the
argument.

matrix operator* Cmatrix&)
Return a new matrix equal to the product of self and the argument.

matrix2X2 operator! C)
Return a new matrix2X2 equal to the transpose of self.

Nseqlib - 75

10/18/89 Nseqlib

doule~ operator- C
Return the determinant of s elf.

matrix2X operator-OC
Return a new mat rix2X equal to the inverse of self.

Commentary

Nseqlib - 76

10/18/89 Nseqlib

Class Xform matrix:public matrix4X4

An Xform matrix is a 4x4 matrix with additional operations that characterize its
role as a 3"-D graphics transformation matrix.

The Xform type argument values may be chosen from (TRANSLATE, ROTATE,
SCALE) and-axis argument values are from {x, Y, z).
The hand arguments are from [L, R}.

Constructors

Xform matrix()
Create an identity transformation.

Xform matrix(Xform matrix& Xm)
Create a duplicate of the argument.

Xform matrix(matrix4X4& m4)
Convert a general 4x4 matrix to an Xform matrix.

Xform matrix(Xform type, double x. double y. double z=0.0)

Create an xform mat r ix with the indicated 3-axis transformation.
Xform matrix(Xform type, axis. double)

Create an xform matrix with the indicated 1-axis transformation.
Xform matrix(gDoint&)

Create a translation matrix from the given gpoint.
Xform matrix(hand, gvector d. axis al. gvector u. axis a2)

Create an Xform matrix with the indicated handedness, with direction
vector d in column a 1, and with up vector u, after adjustment, going into
column a2. The remaining column is determined by the handedness and
by cross products.

Member functions

Xform matrix& identity()

Mfake self an identity transformation.
Xform matrix& zero()

'Make self a zero matrix.
Xform matrix& inverse()

Set se 1 f equal to its inverse.
Xform matrix& transform(Xform type. axis. double)

Transform self by the indicated 1-axis transformation.
Xform matrix& transform(Xform type. double. double, double)

Transform self by the indicated 3-axis transformation.
Xform matrix& translate(double. double. double)

Translate self as indicated on all 3 axes.
Xform matrix& translate(axis, double)

Translate self as indicated on one axis.
Xform matrix& translate(Svector&)

Translate self by the gvector.
Xform matrix& scale(double. double, double)

Nseqlib - 77

10/18/89 Nseqlib

Scale self as indicated on all 3 axes.
Xform matrix& scale(axis. double)

Scale s e if as indicated on one axis.
Xform matrix& rotate(axis. double)

Rotate self about one axis the given number of radians.
Xform matrix& shear (double. double, double)

Shear sel f as indicated.
Xform matrix& perspective (double.doubledouble)

Apply perspective transformation to self as indicated.
Xform matrix& ortho(hand. gvector. axis. gvector, axis)

Apply the indicated orthogonal transformation to s e 1 f.
Xform matrix& operator-(Xform matrix&)

Make self a duplicate of the-argument.
Xform matrix& operator=(matrix4X4&)

lake self a duplicate of the argument.
Xform matrix operator*(Xform matrix&)

Return a new Xformmatrix with the product of self and the argument.
Xform matrix& operator*=(Xform matrix&)

Mfultiply s eif by the argument.
matrix operator*(matrix&)

Return a new matrix holding the product of self and the argument.
Xform matrix operator-()

Return a new Xform matrix holding the inverse of self.

Commentary

Nseqlib - 78

10/18/89 Nseqlib

Class Polyline:public matrix

A Polyline is a sequence of gpoints stored as a matrix.

Constructors

Polyline(Polyline& p)
Construct a duplicate of the argument.

Polyline (int)
Construct a Polyline with room for the indicated number of gpoints.

Member functions

,nt size()
Return the number of gpointscurrently in self.

int maxsize()
Return the maximum allocated size of self.

Pclyline& reset()
Set the internal index in self to zero.

cpoint get next()
Return the next gpoint in self and increment the index.

acoint get(int)
Return the indicated gpoint from self.

Polyline& put next (gpoint
Put the given gpoint into self and increment the index.

.Plvline& put (intgpoint)
Put the given gpoint into self at the indicated location.

-$lvline* process (Xform matrix)
Create a new Polyline in which each gpoint of self has been
transformed by the given Xform matrix. Return a pointer to that new
Polviine.

7:lyline& homrogenize()
Divide through each gpoint in this Polyline by its w coordinate.

E.: iyline& done()
This message indicates that no more additions will be made to self, so the
data array can be copied into a new array whose size just fits the number of
gpo ints currently in self.

73lvline& operator=(Polyline&)
Make self a copy of the given Polyline.

Commentary

Nseqlib - 79

